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Orientable triangulations

Definition

A triangulation of a surface Σ is orientable if all faces can be oriented in a
coherent way:
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Orientability and Attaching lemma

Theorem

The following are equivalent:

1 surface Σ has an orientable triangulation;

2 any triangulation of Σ is orientable;

3 any 2-cell decomposition is orientable.

If these properties hold, we say that the surface Σ is orientable.

Lemma

Sphere with one handle and one Möbius band is homeomorphic to a
sphere with 3 Möbius bands.
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Compact surfaces

A surface embedded in Rn is called compact if it is closed and bounded.
Closed: it contains all its limit points.
Bounded: it can be put inside a ball of sufficiently big radius.

Give example of a closed surface which is not bounded.

Give example of a bounded surface which is not closed.
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Surfaces with and without boundary

Recall: a surface (in Rn) is a geometric figure that is locally
homeomorphic to R2.

A surface with boundary is a geometric figure that is locally
homeomorphic either to R2 or to the upper half plane
H2 = {(x , y) ∈ R2 | y ≥ 0}.
Exercise: guess what are some examples.

Surfaces are surfaces with (empty) boundary.
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Classification theorem

Theorem

Any compact surface Σ is determined uniquely up to homeomorphism by
the following data:

χ(Σ), orientability , number of boundary components

In particular, orientable surfaces with no boundary are just spheres with
handles. Non-orientable surfaces with no boundary are just spheres with
Möbius bands (at least one).
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Definition

A spanning surface or span of a knot K is a surface in R3 (with no self
intersections!) whose boundary is exactly the knot K .

Exercise: unknot can be spanned by a Möbius band.
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Another example

Exercise: Find an oriented span of figure 8 knot.
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Big theorem

Theorem (Frankl-Pontryagin’40, Seifert’44)

Any knot or link can be spanned by an oriented surface.

Seifert algorithm.

Orient the knot diagram.

Pick a start point.

Walk on the knot, and jump at each crossing to another branch,
always moving in the direction of the orientation of the knot.

Keep doing that, until the whole knot is broken into closed curves.
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Seifert cycles
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Continuing Seifert algorithm

In the first part we obtained Seifert cycles.

Starting from innermost cycles, glue them with discs, positioning each
of them slightly above the previous one.

Connect the discs by adjoining strips, with configuration being the
same at all crossing points.

The last question is: why is this thing orientable?
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End of Seifert algorithm

Orientations of polygons come from orientation on the knot.
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